青霉素生产中,葡萄糖虽能很好利用,但生产不适宜,而乳糖虽缓慢利用,却可多产青霉素。在含葡萄糖和乳糖混合培养基中,生长阶段迅速利用葡萄糖,葡萄糖用尽时,对乳糖利用解阻遏,不生长,但产青霉素。也可利用后期流加限量葡萄糖的方法实现。
其他次级产物生产也广泛采用这种方法。另外,氮源种类、浓度对次级产物产生与积累也有很大的影响,磷酸盐也有影响。 (三)在酶生产上应用
酶合成受基因和代谢物双重控制
1、加诱导剂
诱导酶只有在诱导剂存在时形成,在培养基中加入诱导剂。要注意底物诱导剂的浓度。
2、降低阻遏物浓度
参与分解代谢的酶,通常受诱导和阻遏双重控制,包括终产物阻遏和分解代谢物阻遏。为了大量生产酶,要避免使用丰富,复杂培养基,不要含快速利用的糖类。合成酶类通常被终产物阻遏,要对产生阻遏的化合物加以限制。
3、利用突变产生不需诱导物或不受阻遏的突变体
(1)生长在低浓度诱导物中选育不需诱导剂的组成性突变株。
(2)利用抗代谢物,筛选不受终产物阻遏的突变体。
(3)利用被阻遏的酶的底物作唯一的碳源,可筛选不受分解代谢物阻遏的突变体。
4、增加基因模板
将外源特异基因导入微生物体内,增加酶产量。
(1)游离基因转移法
(2)phage转导法
5节:自养菌代谢(微生物的自养代谢)
一、光能自养菌
蓝细菌与高等植物相同,含叶绿素a, b, 其余含菌绿素,有光合膜。光合作用只在有光合色素存在时才进行。
叶绿素(主要色素):捕获能量与光反应中心
光合色素
类胡萝卜素(辅助色素):只捕能并传至叶绿素
(一)主要类群
P150表解
属于原核微生物,归于红螺菌目,利用硫化氢、氢气或有机物作为供氢体。常存在于水较清,可透光的厌氧环境中。
1、红螺菌科(紫色无硫细菌):有机物为供氢体,兼性光合。光能异养。
2、着色菌科(紫色硫细菌):专性厌氧,专性光合,硫化物为供氢体,体内外积累硫。光能自养。
3、绿菌亚目:绿菌科-绿硫细菌,绿弯菌科-绿色非硫细菌。专性厌氧,专性光合,硫化物为供氢体,胞外积累硫。
(二)光合作用
光反应:光合色素吸收光能并转化为化
学能的能量转换反应。
暗反应:利用能量进行CO2同化。
光合磷酸化即光能引起叶绿素分子逐出电子,并通过电子传递产生ATP的方式。
1、环式光合磷酸化
逐出电子经电子传递又回到菌绿素,使其恢复到原状态,其间产生ATP,但不产生还原力,不放出氧气。光合细菌属此类。P151,图6-33
光合菌还原力来自硫化氢,方式可能是逆向电子传递,消耗光反应产生的ATP。
H2S + NAD S + NADH2 积累硫
NADH2+NADP NAD+NADPH2
2、非环式光合磷酸化
两个光反应系统,除产生ATP,还有还原力,放出氧气。植物、蓝细菌属此类。
还原力来自水的光解。P151,图6-34
3、噬盐菌紫膜的光合作用
无叶绿素或菌绿素参与的独特的光合作用,是迄今为止最简单的光合磷酸化反应。(自学)
二、化能自养菌
无机物氧化获能,通过卡尔文环同化CO2
产能主要方式是氧化磷酸化,还原力产生是逆向电子传递。P148,图6-30
无机物氧化时,以不同位置进入呼吸链,这与异养菌不同,产能效率低。图6-31
1、硝化细菌
将氨氧化成亚硝酸-亚硝酸细菌
亚硝酸氧化成硝酸-硝酸细菌
NH4++1?O2→NO2-+2H++H2O+66千卡
NO2-+?O2 →NO3-+18千卡 图6-32
2、硫细菌
引起元素硫或还原态硫化物氧化,包括光能与化能。化能即硫化细菌。最多是硫杆菌Thiobacillus。
S2-→S→SO32-→SO42-
由于产硫酸,会引起金属腐蚀,也可用于湿法冶金。
2S+3O2+2H2O →2H2SO4(T. thiooxidans)
4FeSO4+O2+2H2SO4 →2Fe2(SO4)3+2H2O(T. ferrooxidans)
硫酸及硫酸高铁是有效浸溶剂。
CU2S+ 2Fe2(SO4)3 →2CUSO4 + 4FeSO4 +S
FeS2 +7Fe2(SO4)3 +8H2O →15FeSO4 + 8H2SO4
3、氢细菌
兼性自养菌。H2 +?O2 →H2O+56.5千卡弧菌。
耐气厌氧菌(aerotolerant)-无论有氧无氧,都进行发酵,分子氧无害。如乳酸菌。 
上一页 [1] [2] [3] [4] [5] [6]